Types and Applications of Stainless Steel

100 Series:

Grade	Description	Application
101	Austenitic. Hardenable through cold-working.	Furniture
102	Austenitic. General purpose stainless.	Furniture

200 Series: Austenitic Chromium-Nickel-Manganese Alloys

Grade	Description	Application
201	Replacing some nickel with manganese makes this an	Household appliances,
	inexpensive stainless steel. Not appropriate for applications	cooking utensils,
	that require high corrosion resistance, as it is susceptible to	automotive trim, trailers
	pitting and crevice corrosion. Weldable with 308L filler.	
	Hardenable through cold working.	IN A
202	One of the most common precipitation hardening grades, it	Hose clamps, pipes, rebar,
	has excellent toughness especially at low temperatures.	hinges, hard toes and soles
	Excellent weldability (except with gas) with ER630 filler,	in work boots, windows
- 0	machining produces long, gummy chips. Used as a cost-	and doors, restaurant
	effective stainless where medium hardness but high strength is	equipment, cooking
	needed.	utensils, trailers, railway
		cars
204Cu	Developed as a low-cost alternative to 304 stainless. Copper is	Hinges, baskets, fasteners
	added to boost corrosion resistance. Excellent formability.	
	Prone to work hardening during machining. Weldable with	
	ER630 filler.	
205	Precipitation hardening stainless. About 30% higher yield	For whatever reason, it's
	strength than 304 stainless. Weldable with ER630 filler.	really hard to find info
		about common
		applications of this grade.
		I've never knowingly
		worked with it.

300 Series: Austenitic Chromium-Nickel Alloys

Grade	Description	Application
301	Very ductile, but quickly work hardens when forming. Good weldability, reasonable machinability. Better fatigue strength and wear resistance than 304. It becomes more magnetic than other austenitic grades when cold worked.	Aircraft parts, appliances, trailers, utensils, automotive trim, conveyors, roof drainage systems

302	Very similar to 304 in terms of corrosion resistance, but	Pressure vessels, radio
	higher strength because of added carbon. Comparatively	antennas, bottling
	harder to weld.	equipment, spring clips,
		washers, retainers,
		hospital equipment
303	The free-machining version of 304 stainless. Also referred to	Machined components
	A1 stainless.	
304	The hands-down most common type of stainless, generally	Literally, almost anything.
	the benchmark of comparison for everything. Also called 18-	
	8, A2 stainless, or "Staybrite" (old trade name).	
304L	A low-carbon variation of 304, used to increase weldability.	Weldments, tanks, pipes
	Mildly reduced strength.	
304LN	Similar to 304L for weldability, but added nitrogen	Higher strength
	compensates for lower carbon in terms of strength.	weldments
308	Used as weld filler. Common for welding 304.	Welding rod/filler
309	Higher temperature resistance than 304. Also used for	Burners, heat exchangers,
	joining dissimilar steels.	high-temp wrapping foil,
		welding rod/filler
3095	Low carbon version of 309 to improve weldability.	Burners, heat exchangers
310	Higher temperature applications than 309. Resists scaling	Higher-temp burners
	and creep. Has good high temperature strength.	where Inconel is cost-
24.05		prohibitive
3105	Low carbon version of 310 for increased weidability.	weided nigner-temp
		burners where incohel is
214	Added cilicon for higher heat registance than 210	High tomp burners
216	The second most common grade, molyhdonum added for	Posts/marino_surgical
510	high corresion resistance. Also called A4 stainless. Almost	instruments pulp and
	identical to 304 otherwise	naper processing
		equipment food
		processing, consumer
		goods like watches, etc
316L	Low carbon, used for welding applications. Slightly weaker in	Corrosive-environment
	terms of testing requirements than 316. Very common.	weldments, pipes, tanks
	Stainless can be dual-certified to both 316/316L as long as	
	316L meets minimum strength requirements for 316.	
316N	Nitrogen added to increase strength with a minimal effect on	Pressure vessels, textile
	ductility and corrosion resistance. High creep strength at	finishing, photographic,
	elevated temperatures.	food processing, chemical
		processing
316H	Higher carbon content for higher temp applications. Not very	Chemical and petroleum
	common.	processing, pressure
		vessels, heat exchangers,
		fittings, valves, pumps,
		flanges, pipes

317	Additional molybdenum and chromium for higher corrosion	Highly corrosive
	resistance than 316.	environments where
		titanium is cost-prohibitive
317L	Low carbon variation of 317 for welding applications. Lower	Weldments in highly
	strength than 317.	corrosive environments
		where titanium is cost-
		prohibitive
317LMN	Molybdenum and nitrogen added to compensate for lower	Weldments in highly
	strength due to reduced carbon.	corrosive environments
		where strength is
		important, pressure
		vessels
321	Similar to 304 but for higher strength welds due to addition	Aircraft exhaust manifolds,
	of titanium. Formable. Does not polish well.	bellows, furnace parts,
		burner pipes and flues
321H	High-carbon variation of 321 to improve high temperature	
	strength.	
330	Nitrogen added to resist carburization and thermal shock.	Petrochemical furnace
		parts, heat exchangers, ore
		processing, boiler fixtures
347	Similar to 321 but uses niobium to help with welding and to	Weld filler
	prevent carbide precipitation. Often used as a weld filler for	
	321.	
348	Similar to 321 but with niobium or tantalum to stabilize.	Nuclear

400 Series: Ferritic and Martensitic Chromium Alloys

Grade	Description	Application
403	Martensitic. Reasonable corrosion resistance and high mechanical strength. Usually it's just re-certified 410 since it's practically identical.	When engineers dislike 410 for whatever reason.
405	Ferritic. Cheap stainless that's used for welding applications.	Steam nozzles, partitions, quenching racks, annealing boxes
408	Ferritic. Heat resistant but low corrosion resistance.	
409	Ferritic. Extremely low cost, able to handle high temperatures. Consists of only iron and chromium.	Automotive exhausts, other low-end applications where you want something to minimally meet the "stainless" criteria
410	Martensitic. Good wear resistance, lower corrosion resistance. Can be hardened, tempered, and polished for greater corrosion resistance.	Bolts, screws, nuts, shafts, pumps, valves, mine ladder rungs, gas turbines
416	Free machining because of added sulfur. Less corrosion resistant than 300 series stainless.	Fasteners, bushings, cutlery, turbine blades
420	Martensitic. Highly polishable.	Surgical instruments, cutlery

430	Ferritic. Typically for decorative applications. Formable, but	Automotive trim
	lower corrosion and temperature resistance.	
439	Ferritic. Slightly higher end version of 409 because of higher	Catalytic converter exhaust
	chromium content.	systems
440A	Martensitic. Highest corrosion resistance of the 440's, lowest	Good diving knives,
	carbon content. Found in cheaper knives, but also really	cheaper knives, replica
	practical for diving knives (and other salt-water situations)	swords and whatnot
	where the corrosion resistance is key. Fast to sharpen, but also	
	quickly dulls.	
440B	Martensitic. It's the middle road between 440A and 440C.	Knives
440C	Martensitic. The most common grade of 440. It's known as a	Knives, razors, and other
	high-grade cutlery steel, or "razor steel". It makes good quality	blades
	knives and they hold an edge really well. Not too expensive	
	compared to "name brand" proprietary versions of stainless.	
440F	The free-machining variation of 440C, but not too common.	Machined knives
	Otherwise basically the same.	
446	Good for high-temp applications, corrosion resistant, low	Recuperators, furnace
	strength. Able to withstand molten copper and brass.	linings, combustion
	Weldable with E310 or E312. Forming and bending must be	chambers, glass molds,
	done at low speeds.	spouts for molten copper
		alloys

500 Series: Heat Resisting Chromium Alloys

Grade	Description	Application
501	Reasonably strong in high-heat applications. Almost always annealed when used.	Refinery equipment like oil pump and pipe parts, flanges and fittings
502	Reasonably heat and corrosion resistant, generally used for mild atmospheres where carbon or alloy steel isn't sufficient.	Oil and chemical plants

600 Series: Proprietary Alloys

Grade	Description	Application
601	Martensitic. Low alloy. Difficult to machine. Good high temperature strength.	Rotary kilns, copper brazing, radiant tubes, thermocouple protection
		tubes
602	Martensitic. Low alloy. Highly resistant to oxidation at high	applications available
	temperatures.	
603	Martensitic. Low alloy.	for 600 series stainless
604	Martensitic. Low alloy.	
610	Martensitic. Secondary hardening.	
611	Martensitic. Secondary hardening.	
612	Martensitic. Secondary hardening.	

613	Martensitic. Secondary hardening.	
614	Martensitic chromium steel.	
615	Martensitic chromium steel.	
616	Martensitic chromium steel.	
617	Martensitic chromium steel.	
618	Martensitic chromium steel.	
619	Martensitic chromium steel.	
630	Martensitic. Best known as 17-4, and the most common of the	Petroleum and chemical
	precipitation hardening stainless steels. Easy to heat treat, and	processing, aerospace,
	known for high strength as well as hardness and corrosion	food processing, pulp and
	resistance up to operating temperatures of 600 F	paper, general
		metalworking
631	Austenitic and martensitic. Precipitation hardening.	
632	Austenitic and martensitic. Precipitation hardening.	
633	Austenitic and martensitic. Precipitation hardening.	
634	Austenitic and martensitic. Precipitation hardening.	
635	Austenitic and martensitic. Precipitation hardening.	
650	Austenitic. Strengthened by hot or cold work.	I.N. A
651	Austenitic. Strengthened by hot or cold work.	
652	Austenitic. Strengthened by hot or cold work.	
653	Austenitic. Strengthened by hot or cold work.	
660	Austenitic. Superalloy. Strengthened by second-phase	
	precipitation.	
661	Austenitic. Superalloy.	
662	Austenitic. Superalloy. Strengthened by second-phase	
	precipitation.	
663	Austenitic. Superalloy. Strengthened by second-phase	
	precipitation.	
664	Austenitic. Superalloy. Strengthened by second-phase	
	precipitation.	
665	Austenitic. Superalloy. Strengthened by second-phase	
	precipitation.	

900 Series: Austenitic Chromium-Molybdenum Alloys

Grade	Description	Application
904 /904L	Similar to 316 but with higher corrosion resistance. Highly polishable. Does not machine well and difficult to form.	Extremely corrosive environments, such as piping systems, pollution control equipment, heat exchangers, bleaching systems, marine applications, and Rolex watches (possibly because people that wear Rolexes are corrosive??)

Duplex

Grade	Description	Application
2205	Ferritic/austenitic. The most common Duplex grade. Excellent	
	corrosion resistance and high strength.	

Other Common Stainless Steels

Grade	Description	Application
15-5	Martensitic. Precipitation hardening with copper. Higher	Aerospace fasteners and
/15-5PH	toughness and corrosion resistance than 17-4. Developed	structural components,
	from 17-4	nuclear
17-4	See type 630.	See type 630
/17-4PH		
18-8	See type 304.	See type 304

